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Abstract. We investigate dynamical scaling properties of the one-dimensional tight-binding
Anderson model with weak diagonal disorder, by means of the spreading of a wavepacket. In
the absence of disorder, and more generally in the ballistic regime (t � ξ0 in reduced units, with
ξ0 being the localization length near the band centre), the wavefunction exhibits sharp fronts.
These ballistic fronts yield an anomalous time dependence of theqth moment of the local
probability density, or dynamical participation number of orderq, with a non-trivial exponent
τ(q) for q > 2. This striking feature is interpreted as bifractality. A heuristic treatment of the
localized regime(t � ξ0) demonstrates a similar anomalous scaling, but withξ0 replacing time.
The moments of the position of the particle are not affected by the fronts, and obey normal
scaling. The crossover behaviour of all these quantities between the ballistic and the localized
regime is described by scaling functions of one single variablex = t/ξ0. These predictions are
confirmed by accurate numerical data, both in the normal and in the anomalous case.

1. Introduction

The Anderson localization in a random potential is now well understood, at least as far as
static or spectral properties are concerned [1]. In the one-dimensional case, all eigenstates
are exponentially localized, with the localization lengthξ(E) depending on energyE [2, 3].
Dynamical aspects, concerning mostly the spreading of a wavepacket, have also recently
attracted considerable interest [4–6], especially in connection with diffusion in driven
quantum systems and random band matrices [7–9], and more recently with the problem
of two interacting particles [10].

In this paper, we emphasize a novel and striking feature of the dynamics of the one-
dimensional tight-binding Anderson model. Theqth moment of the local probability density,
or dynamical participation number of orderq, to be defined in equation (1.4), exhibits
anomalous scaling and bifractal behaviour, with a non-trivial exponentτ(q) for q > 2.
This phenomenon seems to have been entirely overlooked so far. It will be shown to take
place in the absence of disorder, and in the ballistic regime, in the localized regime, and
throughout the crossover between them.
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To be more specific, we investigate the time-dependent wavefunction of a tight-binding
electron in one dimension, which obeys

i
dψn(t)

dt
= ψn+1(t)+ ψn−1(t)+ vnψn(t) (1.1)

in reduced units, such that lengths are measured in units of the lattice spacing, and energies
and inverse times in units of the hopping integral. The diagonal site potentials{vn} are
independent random variables, drawn from a common distribution. We choose the initial
condition of a particle sitting at the siten = 0 at the origin of times:

ψn(0) = δn,0. (1.2)

We characterize the spreading of the wavepacket by the following quantities.
• Moments of the position of the particle:

Mq(t) = 〈|n|q〉 =
∑
n

|n|qPn(t). (1.3)

• Moments of the probability density (dynamical participation numbers):

Sq(t) =
∑
n

(Pn(t))q . (1.4)

In the above definitions, the probability density reads

Pn(t) = |ψn(t)|2 (1.5)

and the indexq is any real positive number, not necessarily an integer. The bar denotes an
average over the disorder, i.e. over the distribution of the random site potentials{vn}. The
conservation of the norm of the wavefunction ensures thatM0(t) = S1(t) = 1 at all times
t > 0. The most commonly considered quantities in the literature are the mean-squared
positionM2(t) and the participation number (or inverse participation ratio)S2(t) [11–13].

Scaling properties are known to hold in the weak-disorder regime, namely for a small
enough random potential. Assuming that the site potentials have zero average, it is sufficient
to characterize their distribution by its variance:

vn = 0 v2
n = σ 2� 1. (1.6)

To lowest order in perturbation theory, the localization length is maximal in the vicinity of
the band centre, where it scales as [1–3]

ξ0 ≈ 8

σ 2
. (1.7)

This is the characteristic length scale where the localization phenomenon takes place. The
absence of an intermediate diffusive regime between the ballistic one(t � ξ0) and the
localized one(t � ξ0) is a peculiarity of the one-dimensional situation, where there is no
fundamental difference between the mean free path and the localization length [14–18]. A
more detailed description of the localization length, including its anomalous scaling near
band edges, will be recalled in section 3.1.

We shall be interested in the long-time behaviour of the momentsMq(t) and Sq(t)
defined above, in the weak-disorder regime. Scaling properties can be expected in this
situation, where both characteristic length scalest and ξ0 are simultaneously large. The
set-up of this paper is as follows. Section 2 contains a detailed analytical investigation of
the problem in the absence of disorder. The wavefunction is given by a Bessel function,
which exhibits three different kinds of asymptotic behaviour in the(n, t) plane. As a
consequence, the momentsSq(t) of the probability density exhibit anomalous growth with
a scaling exponentτ(q) for q > 2. This behaviour, interpreted as bifractality, is expected
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to hold in the ballistic regime, namely fort � ξ0, where disorder will have hardly any
effect on the ballistic motion of the particle in the absence of disorder. In section 3 we
show on a heuristic basis that the same kind of anomalous scaling, with the same exponent
τ(q), also takes place in the localized regime(t � ξ0), but with the asymptotic width of
the wavepacket, of orderξ0, replacing time. Finally, we demonstrate that all the quantities
under consideration exhibit scaling behaviour throughout the crossover between the free
(ballistic) and the localized (insulating) regimes, involving universal scaling functions of
the variablex = t/ξ0. This prediction is confirmed by accurate numerical data. Section 4
contains a brief discussion.

2. Analytical results in the absence of disorder

2.1. Description of the wavefunction

In the absence of disorder, the dynamics of the Anderson model can be investigated
analytically. Let us denote the various quantities with the superscript (0) in this limiting
case. The stationary tight-binding equation reads

ψ
(0)
n+1+ ψ(0)

n−1 = Eψ(0)
n . (2.1)

Its eigenfunctions are the plane wavesψ(0)
n = einp, where momentump is related to energy

E by the dispersion relation

E = 2 cosp. (2.2)

We thus obtain an explicit expression for the time-dependent wavefunction,

ψ(0)
n (t) =

∫
B

dp

2π
einp−2it cosp = i−nJn(2t) (2.3)

where the momentum integral runs over the Brillouin zoneB = [−π, π ]. The probability
density at siten,

P (0)n (t) = |ψ(0)
n (t)|2 = (Jn(2t))2 (2.4)

is thus the square of the Bessel functionJn(2t), whose argument is proportional to time,
while its order is the number of the site, i.e. the distance travelled by the particle from its
starting point.

It turns out that three regions have to be considered in the(n, t) plane, where the Bessel
function admits different kinds of asymptotic behaviour. The existence of these regions
can be explained by the following semi-classical argument. The dispersion relation (2.2)
corresponds to the group velocityv = dE/dp = −2 sinp. As a consequence, for a
wavepacket initially peaked in momentum space around some meanp∗, the centre of mass
will move according to the semi-classical law

〈n〉 ≈ −2t sinp∗. (2.5)

We thus expect an allowed region(|n| < 2t), separated from a forbidden region(|n| > 2t)
by sharp fronts located atn ≈ ±2t .

The above heuristic picture can be made quantitative by means of the following
asymptotic formulae in the theory of Bessel functions [19]. As a matter of fact, the derivation
of these formulae relies on the method of steepest descent, with the saddle-point equation
coinciding with equation (2.5).
• Allowed region(|n| < 2t).
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For n > 0, and with the notation

n = 2t sinp (0< p < π/2) (2.6)

in agreement with the semi-classical law (2.5), we have

P (0)n (t) ≈ sin2(n(p + cotp − π/2)+ π/4)
πt cosp

. (2.7)

The probability density is thus the product of 1/t by a rapidly oscillating amplitude, as
expected in an allowed region.
• Forbidden region(|n| > 2t).
For n > 0, and with the notation

n = 2t coshθ (θ > 0) (2.8)

we have

P (0)n (t) ≈ exp(−2n(θ − tanhθ))

4πt sinhθ
. (2.9)

The probability density thus decays exponentially, as expected in a forbidden region.
• Transition region(|n| ≈ 2t).
The transition region, corresponding to the ballistic fronts, turns out to extend over a

spatial range of ordert1/3. For n > 0, and with the notation

n = 2t + t1/3z (2.10)

the probability density is approximated as

P (0)n (t) ≈ t−2/3(Ai(z))2 (2.11)

with Ai(z) being the Airy function. The asymptotic behaviour of this function, namely

Ai(z) ≈
{
π−1/2|z|−1/4 sin( 2

3|z|3/2+ π
4 ) (z→−∞)

1
2π
−1/2z−1/4 exp(− 2

3z
3/2) (z→+∞) (2.12)

respectively matches equations (2.7) and (2.9).
Throughout the transition region, the probability density is the product oft−2/3 by an

amplitude which oscillates toward the allowed region(z→−∞), and falls off exponentially
toward the forbidden region(z→+∞).

The existence of these three regions is illustrated in figure 1, showing the probability
densityP (0)n (t) against site numbern, for a timet = 100.

2.2. Moments of the position

We now turn to the analysis of the momentsM(0)
q (t) of the position of the particle, in the

absence of disorder. These quantities are quadratic forms in Bessel functions, so that their
analysis is rather easy, at least for even integer values of the index:q = 2k. We have
indeed

M
(0)
2k (t) =

∑
n

n2k(Jn(2t))
2

=
∫
B

dp

2π

∫
B

dp′

2π
e2it (cosp′−cosp)

∑
n

n2kein(p−p′)

︸ ︷︷ ︸
2π
(
−i d

dp

)2k
δ(p−p′)

=
∫
B

dp

2π
e−2it cosp

(
− d2

dp2

)k
e2it cosp. (2.13)
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Figure 1. Plot of the probability densityP (0)n (t) = (Jn(2t))2 in the absence of disorder,
against site numbern, for a time t = 100. Arrows indicate the semi-classical ballistic fronts at
n = ±200.

The integrand of the last expression can be expanded as a trigonometric polynomial. As a
result, the momentsM(0)

2k (t) are even polynomials oft , with positive integer coefficients.
We haveM(0)

0 (t) = 1, as expected, and

M
(0)
2 (t) = 2t2 M

(0)
4 (t) = 6t4+ 2t2 M

(0)
6 (t) = 20t6+ 30t4+ 2t2 etc. (2.14)

The long-time behaviour of the moments is obtained by letting all the derivatives act
on the exponential in the last expression of equation (2.13). We thus obtain

M
(0)
2k (t) ≈ a2kt

2k (t � 1) (2.15)

with

a2k =
∫
B

dp

2π
(4 sin2p)k = (2k)!

(k!)2
. (2.16)

This estimate can be shown to hold true for any realq > 0, namely

M(0)
q (t) ≈ aqtq (t � 1) (2.17)

with

aq = 2q

π1/2

0
(
q+1

2

)
0
(
q+2

2

) (2.18)

where0(z) denotes Euler’s gamma function.

2.3. Moments of the probability density (participation numbers)

The analysis of the long-time behaviour of the momentsS(0)q (t) of the probability density
is slightly more involved. Indeed these quantities are highly nonlinear functionals of the
wavefunction. As the indexq gets larger, they are more and more sensitive to large values
of the wavefunction, whereas the momentsM(0)

q (t) of the position are not.
The asymptotic expressions (2.7), (2.9), (2.11) show that the probability densityP (0)n (t)

scales as 1/t in the allowed region (bulk of the wavefunction), over an extent of ordert sites,
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Table 1. Summary of various characteristic features of the bifractality phenomenon.

Component of bifractality Normal Anomalous

Relevant region of wavefunction Bulk Fronts

in ballistic regime(t � ξ0) (allowed region) (transition region)

Pn(t) ∼ t−1 Pn(t) ∼ t−2/3

Relevant eigenstates Bulk of spectrum Band edges

in localized regime(t � ξ0) ξ ∼ ξ0 ∼ σ−2 ξ ∼ σ−2/3

Range of indexq q < 2 q > 2

Exponentτ(q) q − 1 2q−1
3

Rényi dimensionDq 1 2q−1
3(q−1)

Multifractal spectrum α = 1, f = 1 α = 2
3 , f = 1

3

while it scales ast−2/3 in the transition region (fronts of the wavefunction), over an extent
of order t1/3 sites, and it is negligible in the forbidden region (tails of the wavefunction).
Hence the bulk has a normal contribution to the momentS(0)q (t), scaling ast−(q−1), while
the anomalous contribution of the fronts scales ast−(2q−1)/3. This analysis therefore predicts
the power-law behaviour

S(0)q (t) ≈ bqt−τ(q) (t � 1) (2.19)

with τ(q) being the smaller of both exponents, namely

τ(q) =

q − 1 for q < 2 (normal)

2q − 1

3
for q > 2 (anomalous).

(2.20)

This prediction is summarized in table 1. It can be made more quantitative by the
following analysis, yielding the value of the prefactorbq of the formula (2.19) in either
case.
• Normal regime(q < 2).
In the normal regime, the momentS(0)q (t) is dominated by the bulk of the wavefunction,

corresponding to the allowed region. The prefactor of equation (2.19) can be estimated
from the expression (2.7), assuming that the arguments of the sine functions are uniformly
distributed, and transforming the sum overn into an integral overp. We thus obtain after
some algebraS(0)q (t) ≈ bqt−(q−1), in agreement with equation (2.20), with

bq = 2

πq

0
(

2−q
2

)
0
(

3−q
2

) 0 (q + 1
2

)
0(q + 1)

(q < 2). (2.21)

• Anomalous regime(q > 2).
In the anomalous regime, the momentS(0)q (t) is dominated by the fronts of the

wavefunction, corresponding to the transition region. The prefactor of this moment can
then be estimated by using the expression (2.11), and transforming the sum overn into an
integral overz. The outcome again agrees with equation (2.20), and yields

bq = 2
∫ +∞
−∞

dz|Ai(z)|2q (q > 2). (2.22)

We have in particular

b3 = 0.073 214. (2.23)
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• Marginal case(q = 2).
This borderline case corresponds to the usual participation numberS2(t). The exponents

of the contributions of the bulk and of the fronts have the common valueτ(2) = 1. It is
worth noting that the prefactorbq diverges asbq ≈ 3/(2π2|q − 2|) as q → 2 from both
sides. This can be checked forq < 2 directly from equation (2.21), and forq > 2 from the
behaviour (2.12) of the Airy function asz→−∞.

The momentS(0)2 (t) turns out to exhibit a logarithmic correction to its leading 1/t

behaviour, which can be analysed by means of the Mellin transformation. The function
S
(0)
2 (t) and its Mellin transformm(s) are related by

m(s) =
∫ ∞

0
t s−1S

(0)
2 (t) dt S

(0)
2 (t) =

∫
ds

2π i
t−sm(s) (2.24)

for Res positive and small enough. We have

S
(0)
2 (t) =

∑
n

(Jn(2t))
4

=
∫
B

dp1

2π
. . .

∫
B

dp4

2π
e2it (cosp1+cosp2−cosp3−cosp4)

∑
n

ein(p3+p4−p1−p2)

︸ ︷︷ ︸
2πδ(p1+p2−p3−p4)

=
∫
B

du

2π

∫
B

dv

2π

∫
B

dw

2π
e−8it sinu sinv sinw (2.25)

where the last expression has been obtained by the change of variables

u = (p1− p2+ p3− p4)/4 v = (p1− p2− p3+ p4)/4

w = (π − p1− p2)/2= (π − p3− p4)/2.
(2.26)

The product structure of the last expression of equation (2.25) makes it suitable to the
closed-form evaluation of the Mellin transformm(s). We indeed obtain, for 0< Res < 1,

m(s) = 0(s)
∫
B

du

2π

∫
B

dv

2π

∫
B

dw

2π
(8i sinu sinv sinw)−s

= 0(s)8−s cos
sπ

2

(∫
B

du

2π
| sinu|−s

)3

= 0(s)8−s cos
sπ

2

(
0
(

1−s
2

)
π1/20

(
2−s

2

))3

. (2.27)

The long-time behaviour ofS(0)2 (t) is given by the double-pole singularity ofm(s) at s = 1,
of the form

m(s) = 1

2π2

(
1

(1− s)2 +
6 ln 2+ γE

1− s + · · ·
)

(2.28)

whereγE denotes Euler’s constant, hence

S
(0)
2 (t) ≈ ln t + 6 ln 2+ γE

2π2t
(t � 1). (2.29)

We have thus derived both the prefactor and the finite part of the logarithmic correction of
the dynamical participation numberS(0)2 (t) in the absence of disorder. The finite part is a
surprisingly large number: writing the numerator of equation (2.29) as ln(t/t0), we have
1/t0 = 64 exp(γE) = 113.989.
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2.4. Interpretation: bifractality of the probability density

The scaling law (2.19), (2.20) for the momentsS(0)q (t) of the probability density in the
absence of disorder, with its two branches of exponentτ(q), can be interpreted within
the multifractal formalism [20]. Indeed, the wavefunction takes appreciable values over a
number of lattice sites of ordert . As a consequence, 1/t can be viewed as a short-distance
cut-off in the definition (1.4) of the momentsSq(t).

The scaling exponentτ(q) can be interpreted in terms of generalized (Rényi) dimensions
Dq of the local probability density. The relationτ(q) = (q − 1)Dq yields

Dq =


1 for q < 2 (normal)

2q − 1

3(q − 1)
for q > 2 (anomalous).

(2.30)

The probability density can be alternatively characterized by a multifractal spectrumf (α),
which is the Legendre transform of the exponentτ(q), according to

α = dτ

dq
f = q dτ

dq
− τ. (2.31)

The expression (2.20) yields the following results. The normal branchτ(q) = q − 1, i.e.
Dq = 1, for q < 2 yields the point(α = 1, f = 1), corresponding to the normal scaling
of the bulk of the wavefunction, while the anomalous branchτ(q) = (2q − 1)/3 for q > 2
yields the point(α = 2

3, f = 1
3), corresponding to the anomalous scaling of the fronts of

the wavefunction.
These results are summarized in table 1. We propose to call bifractality such a scaling

behaviour, with a normal and an anomalous component.

3. Scaling analysis in the general case

3.1. A reminder on band-edge anomalous scaling

We first recall some results on the scaling behaviour of the localization length in the presence
of a weak diagonal disorder. Inside the band of the pure system, characterized by the
dispersion relation (2.2), and in the weak-disorder regime(σ 2� 1), the localization length
scales as [1–3]

ξ ≈ 8 sin2p

σ 2
≈ ξ0 sin2p. (3.1)

This leading-order perturbative prediction vanishes asp→ 0 orp→ π , corresponding
to the band edges, namelyE → ±2. This observation suggests that the localization
phenomenon has something special near band edges. This effect has been initially
investigated by Derrida and Gardner [21], who indeed demonstrated the presence of
anomalous scaling in the localization lengthξ(E) and the density of statesρ(E). These
quantities behave near the upper band edge (E→ 2, σ → 0) as

ξ ≈ σ−2/381(σ
−4/3(E − 2)) ρ ≈ σ−2/382(σ

−4/3(E − 2)) (3.2)

where the scaling functions81 and82 are known analytically.
Roughly speaking, the eigenstates whose energy lies near the band edges have a

localization length of orderσ−2/3. These states are therefore much more localized than
typical eigenstates within the band, whose localization length is of orderξ0 ∼ σ−2. Only a
small fraction of the whole spectrum, of orderσ 2/3 or ξ−1/3

0 , consists of these anomalously
localized eigenstates.
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3.2. Heuristic analysis of the localized regime

We now turn to a heuristic investigation of the moments of the position and of the
probability density, in the presence of a weak diagonal disorder, and in the localized regime
(t � ξ0� 1).

Consider for definiteness the Anderson model on a very long chain made ofN � 1 sites,
for a given realization of the random potentials{vn}. Let Eα be the energy eigenvalues,
labelled in some way by an integerα, andψα

n be the corresponding eigenvectors. We have∑
n

ψα
n ψ

β
n = δα,β

∑
α

ψα
mψ

α
n = δm,n. (3.3)

We define the centre-of-mass coordinatenαcm and the localization lengthξα of every
eigenstate as

nαcm =
∑
n

n(ψα
n )

2 ξα =
(∑

n

(n− nαcm)
2(ψα

n )
2

)1/2

. (3.4)

The initial condition (1.2) can be expanded asψn(0) = δn,0 =
∑

α ψ
α
n ψ

α
0 . As a

consequence, the wavefunction reads at all timest > 0

ψn(t) =
∑
α

e−iEαtψα
n ψ

α
0 . (3.5)

3.2.1. Moments of the position.Let us first take the example of the mean-squared position,
for which equation (3.5) yields

M2(t) =
∑
α,β

e−i(Eα−Eβ)tψα
0ψ

β

0

∑
n

n2ψα
n ψ

β
n . (3.6)

Our heuristic analysis of this expression will be based on the following two hypotheses.
(A) Interference terms between different quantum states can be neglected for large

enough times. Equation (3.6) thus becomes in the localized regime

M2(∞) ≈
∑
α

(ψα
0 )

2
∑
n

n2(ψα
n )

2. (3.7)

(B) Scaling properties of eigenstates can be modelled by considering that the probability
density (ψα

n )
2 is roughly uniform over the range|n− nαcm| < ξα. This simple scaling

hypothesis has been shown by analytical means to hold in a variety of models, including
random band matrices [7, 8], and the continuum Schrödinger equation in one dimension [13].
It amounts to stating that single eigenstates of the one-dimensional Anderson model do not
exhibit multifractality, in contrast with earlier claims based on numerical evidence [22].

Consider first an eigenstate localized near the origin(|nαcm| � ξα). For such an
eigenstate, we have

∑
n n

2(ψα
n )

2 ∼ (ξα)2, while the prefactor(ψα
0 )

2 scales as 1/ξα. Now,
in a small energy interval1E around some energyE, there are altogetherNρ(E)1E
eigenstates, among which only a finite number, of orderξ(E)ρ(E)1E, have|nαcm| ∼ ξα.
All these eigenstates bring comparable contributions, of order(ξ(E))2, to the sum in
equation (3.7). It is worth noting that the factorξ(E) in the number of relevant eigenstates
just compensates the prefactor(ψα

0 )
2 ∼ 1/ξα. We are thus left with the estimate

M2(∞) ∼ 〈(ξα)2〉α (3.8)

where the angular brackets denote an average over the whole spectrum of eigenstatesα.
More explicitly,

M2(∞) ∼
∫
(ξ(E))2ρ(E)dE ∼ ξ2

0 . (3.9)
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We thus obtain the physically intuitive result that the mean-squared position saturates to a
value of orderξ2

0 for t � ξ0. Generalizing the above argument, we get the asymptotic result

Mq(∞) ≈ Aqξq0 (3.10)

for all the moments of the position, deep in the localized regime.
This prediction can actually be made quantitative, using results from the Russian

literature [14–17]. The long-time density correlation function has been calculated in these
references, for the continuum Schrödinger equation with a weak white-noise potential. If the
initial wavepacket is peaked in energy around some meanE, one hasMq(∞) ≈ pq(2ξ(E))q ,
with the notation of [16], where the amplitudespq have been calculated analytically, for
integer values ofq. In the present situation, by averaging this prediction over the whole
spectrum of energies, we recover equation (3.10), with

Aq = pq
∫
B

dp

2π
(2 sin2p)q. (3.11)

We have in particular

A2 = 3ζ(3)

4
= 0.901 543 A4 = 7(180ζ(5)+ π4)

128
= 15.5343 etc (3.12)

whereζ denotes Riemann’s zeta function.

3.2.2. Moments of the probability density (participation numbers).Let us now turn to the
more interesting case of the momentsSq(t) of the probability density, withq = 2, 3, . . .
being an integer. Equation (3.5) and hypothesis (A) yield

Sq(∞) ≈
∑

α1,...,αq

(ψ
α1
0 )

2 . . . (ψ
αq
0 )

2
∑
n

(ψα1
n )

2 . . . (ψ
αq
n )

2. (3.13)

Let us assume that the eigenstatesα1, . . . , αq are ordered according to increasing localization
lengths: ξα1 < ξα2 < · · · < ξαq , and employ again hypothesis (B). If all theq
eigenstates have their centre-of-mass coordinates close enough to the origin(|nαkcm| � ξαk

for k = 1, . . . , q), the product(ψα1
n )

2 . . . (ψ
αq
n )

2 is non-zero where theq eigenfunctions
have a good common overlap. This occurs in the intersection of all their ranges, i.e. for
|n| < ξα1, where the product is of order 1/(ξα1ξα2 . . . ξαq ), while the sum overn brings
a factor ofξα1. Here again, the number of relevant eigenstates in some energy range1E

cancels out with the prefactors(ψα1
0 )

2 . . . (ψ
αq
0 )

2, whence the estimate

Sq(∞) ∼
〈

1

ξα2 . . . ξαq

〉
α1,...,αq

. (3.14)

The averaging of this expression over the eigenstatesα1, . . . , αq is more subtle than in
the case of equation (3.8), since negative powers of the localization lengths are involved.
Hence the anomalously localized eigenstates near the band edges can, and indeed will, play
a role.
• If all the eigenstatesα1, . . . , αq belong to the bulk of the spectrum, their localization

lengths scale asξ0, and we obtain the normal predictionSq(∞) ∼ ξ−(q−1)
0 .

• If, on the contrary, some of the eigenstates, namelyα1, . . . , αm, with m > 1, belong
to the band edges, whileαm+1, . . . , αq belong to the bulk of the spectrum, the quantity
to be averaged now scales asξ−(m−1)/3−(q−m)

0 , while the total fraction of suchq-uples of
eigenstates is of orderξ−m/30 . The optimal choice of the numberm of anomalous eigenstates
is m = q, hence the anomalous estimateSq(∞) ∼ ξ−(2q−1)/3

0 .
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The exponents of the above two estimates coincide with those obtained in section 2.3
in the absence of disorder, with the localization length scaleξ0 replacing time, the bulk
of the spectrum replacing the allowed region, and the band edges replacing the ballistic
fronts. Generalizing the above reasoning to non-integer values of the indexq, we predict
the power-law behaviour

Sq(∞) ≈ Bqξ−τ(q)0 (ξ0� 1) (3.15)

for the participation numbers in the localized regime, with the exponentτ(q) being given
in equation (2.20) and in table 1. Finally, in analogy with the result (2.29) in the absence
of disorder, a logarithmic correction of the form

S2(∞) ≈ λ ln ξ0+ µ
ξ0

(ξ0� 1) (3.16)

is expected in the marginal case(q = 2) of the usual participation number. The values of
the prefactorsBq , andλ andµ cannot be predicted by this heuristic analysis.

3.3. Scaling laws in the crossover regime

So far, we have obtained two kinds of predictions concerning the momentsMq(t) of the
position of the particle andSq(t) of the probability density in the weak-disorder regime.
On the one hand, the analytical results (2.17), (2.19) obtained in the absence of disorder are
expected to hold more generally in the ballistic regime, i.e. for 1� t � ξ0. On the other
hand, a heuristic scaling analysis led us to the predictions (3.10), (3.15) in the localized
regime, i.e. for 1� ξ0� t .

It turns out that the exponents involved in these results always match between the
ballistic and the localized regime, both in the normal and in the anomalous case. We are
thus led to conjecture that the crossover between these two limiting situations is described
by universal scaling functions of the single variable

x = t

ξ0
(3.17)

throughout the scaling region wheret and ξ0 are simultaneously large, with the ballistic
regime corresponding tox � 1, and the localized regime tox � 1. It is worthwhile to
recall that the absence of an intermediate diffusive regime between the ballistic one and the
localized one is a peculiarity of the one-dimensional geometry.

3.3.1. Moments of the position.We thus propose the following one-variable scaling law
for the moments of the position of the particle:

Mq(t) ≈ aqtqFq(x) (3.18)

where the amplitudesaq are as in equation (2.18). The result (2.17) in the absence of disorder
is recovered asFq(0) = 1, while the estimate (3.10) in the localized regime implies the
power-law fall-off

Fq(x) ≈ Aq

aq
x−q (x � 1). (3.19)

The scaling law (3.18) can be shown to hold asx � 1, by means of a direct perturbative
expansion in the random potentials [23]. This approach, following the lines of [24, 3], yields

Fq(x) = 1− a(1)q x + · · · (x � 1) (3.20)
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at least when the indexq = 2k is an even integer, and in particular

a
(1)
2 =

32

3π
= 3.395 31 a

(1)
4 =

1216

135π
= 2.867 15 etc. (3.21)

The analysis of the continuum Schrödinger equation [17] yields a behaviour similar to
equation (3.20) at smallx, as well as a singular correction of relative order(ln x)/x to the
leading power law (3.19) at largex. This logarithmic correction has been included in the
analysis of numerical data on large random band matrices [9].

3.3.2. Moments of the probability density (participation numbers).Similarly, we postulate
the following one-variable scaling laws for the moments of the probability density

Sq(t) ≈ bqt−τ(q)Gq(x) (q 6= 2) (3.22)

where the amplitudesbq are as in equation (2.21) in the normal regime(q < 2), and as
in equation (2.22) in the anomalous regime(q > 2). The result (2.19) is recovered as
Gq(0) = 1, while the estimate (3.15) implies the power-law behaviour

Gq(x) ≈ Bq

bq
xτ(q) (x � 1). (3.23)

In the marginal case of the usual participation numberS2(t), we expect a logarithmic
correction of the form

S2(t) ≈ φ(x) ln t + χ(x)
t

. (3.24)

The result (2.29) in the absence of disorder is recovered as

φ(0) = 1

2π2
= 0.050 660 χ(0) = 6 ln 2+ γE

2π2
= 0.239 933 (3.25)

while the estimate (3.16) in the localized regime implies

φ(x) ≈ λx χ(x) ≈ (µ− λ ln x)x (x � 1). (3.26)

3.4. Numerical results

In order to confirm the scaling predictions of section 3.3, we have performed direct numerical
simulations of the dynamics of the tight-binding Anderson model. Introducing a finite
timestepε, we have discretized equation (1.1) into the difference equation

ψn(t + ε) = ψn(t − ε)− 2iε(ψn+1(t)+ ψn−1(t)+ vnψn(t)). (3.27)

In the absence of disorder, the dispersion relation of the corresponding stationary equation
between energyE and momentump now reads

sin(εE) = 2ε cosp. (3.28)

For a fixed momentump, equation (3.28) has a first solutionE(1) = 2 cosp +
(4ε2/3) cos3p + · · · that smoothly converges toward the continuous-time expression (2.2),
and a second solutionE(2) = π/ε − E(1) modulo 2π/ε, corresponding to fast oscillations
over a timescaleε.

We have taken the initial condition (1.2) at timet = 0, while we have chosen at time
t = ε the Taylor expansion of the solution of equation (1.1), to second order inε included.
The only non-zero components in the full initial condition read

ψ0(0) = 1 ψ0(ε) = 1− iv0ε − (1+ v2
0/2)ε

2

ψ±1(ε) = −iε − (v0+ v±1)ε
2/2 ψ±2(ε) = −ε2/2.

(3.29)
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This prescription reduces to the level ofε3 the amplitude of the fast oscillations related to
theE(2) branch of the dispersion relation (3.28).

We want to emphasize that the discrete-time difference equation (3.27) has the very
same physical contents as the continuous-time differential equation (1.1). As an illustration
of this point, the mean-squared positionM(0)

2 (t) still obeys the ballistic law (2.14), albeit
with a prefactor given by

a2 =
∫
B

dp

2π

4 sin2p

1− 4ε2 cos2p
= 1− (1− 4ε2)1/2

ε2
= 2+ 2ε2+ · · · . (3.30)

The valuea2 = 2, characteristic of the continuous-time equation (see equations (2.14),
(2.16)), is thus recovered, with a small correction inε2.

We have performed numerical simulations of the difference equation (3.27), with a
timestepε = 0.05, so that the oscillations and other discretization effects are negligible.
The random site potentials have been drawn from a uniform distribution over the interval
−W/2< vn < W/2, so thatσ 2 = W 2/12 and

ξ0 ≈ 96

W 2
. (3.31)

The data to be presented below correspond to the following 10 values of the localization
length scale:

ξ0 = 25, 35, 50, 70, 100, 140, 200, 280, 400, 560. (3.32)

For each value ofξ0, the strength of disorderW is taken from the perturbative relation (3.31).
The measured quantities are averaged over 1000 independent realizations of the random
potentials. For each realization, equation (3.27) is integrated up to a timetmax = 5ξ0,
in order to enter into the localized regime, and for a range of space|n| 6 nmax, with
nmax= 2.5tmax= 12.5ξ0, in order to fully encompass the ballistic fronts.

3.4.1. Moments of the position.We have first checked the validity of the scaling law (3.18)
for the momentsMq(t) of the position of the particle, as well as the analytical predictions
concerning the associated scaling functions, on the examples ofq = 2 andq = 4. Figures 2
and 3 respectively show log–log plots of numerical data forM2(t) andM4(t), divided by
their expressions (2.14) in the absence of disorder, against the scaling variablex = t/ξ0.
The data, corresponding to the six largest values of equation (3.32) forξ0, collapse in a
nice way. This demonstrates the existence of the one-variable scaling functionsF2(x) and
F4(x).

The broken curves show the linear correction (3.20), (3.21) of the scaling functions at
smallx, as well as their asymptotic behaviour (3.19) at largex, namelyF2(x) ≈ 0.4508/x2

and F4(x) ≈ 2.589/x4. The full curves show the one-parameter phenomenological fits
F2(x) = (1 + 3.395x + 0.154x ln(x + 1) + 2.218x2)−1 and F4(x) = (1 + 1.4336x +
0.622x ln(x + 1) + 0.6215x2)−2. These expressions incorporate the small-x and large-x
behaviour recalled just above. The fitted parameters are the amplitudes of thex ln(x + 1)
terms, reflecting the structure in(ln x)/x of the leading correction term at largex discussed
below equation (3.21). The good quality of the fits shows the quantitative agreement between
analytical predictions and numerical data. We have also checked that the amplitudes of the
behaviour (3.19), (3.20) of the scaling functions at small and largex are recovered within
better than 10% if they are left as free fitting parameters, instead of being imposed as
constraints.
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Figure 2. Log–log plot of the ratio of mean-squared positionM2(t) to its valueM(0)
2 (t) in the

absence of disorder, against the scaling variablex = t/ξ0. Symbols: numerical data for various
values ofξ0. Phenomenological fit (full curve) and asymptotic behaviour (broken curves) are
given in the text.

Figure 3. Same as figure 2, for the fourth momentM4(t) of the position.

3.4.2. Moments of the probability density (participation numbers).We now turn to the
momentsSq(t) of the probability density, for which fewer analytical predictions are
available. We have first investigated the anomalous scaling laws of these moments in
the localized regime, on the example ofq = 3. In order to check the power law (3.15),
as well as the leading correction to it, which can be expected to be of relative orderξ

−1/3
0 ,

we have plotted in figure 4 the productξ2
0S3(∞) againstξ1/3

0 . The data points correspond
to all the values of equation (3.32) forξ0. For eachξ0, the data forS3(t) in the range
1 6 t/ξ0 6 5 have been extrapolated, in order to get a reliable estimate forS3(∞). The
error bars on the numbers obtained in this way are comparable to the symbol size. The
plotted data nicely follow the least-square fity = 2.46x − 2.21, confirming thus both the
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Figure 4. Plot of the productξ2
0S3(∞) againstξ1/3

0 . Symbols: numerical data for various values
of ξ0. The least-square fit (full curve) is given in the text.

Figure 5. Same as figure 4, for the productξ0S2(∞) against lnξ0.

power-law behaviour (3.15) and the anticipated nature of the correction term, and yielding
the estimate

B3 ≈ 2.5. (3.33)

In order to check the logarithmic behaviour (3.16) of the participation number in the
localized regime, we have plotted in figure 5 the productξ0S2(∞) against lnξ0. The data
points have been obtained as those of figure 4. They nicely follow the least-square fit
y = 0.253x + 0.642, confirming thus the behaviour (3.16), and yielding the estimates

λ ≈ 0.25 µ ≈ 0.64. (3.34)

We have then determined the full one-variable scaling functions, defined in
equation (3.22), for the participation numbers throughout the crossover from the ballistic
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Figure 6. Log–log plot of the ratio of the participation numberS3(t) to its valueS(0)3 (t) in the
absence of disorder, against the scaling variablex = t/ξ0. Symbols and curves as in figure 2.

to the localized regime. We have again considered the example ofq = 3. Figure 6 shows
a log–log plot ofS3(t), divided by its behaviour (2.19), (2.23) in the absence of disorder,
against the scaling variablex = t/ξ0. The data, corresponding to the six largest values
of equation (3.32) forξ0, again collapse in a nice way, demonstrating the existence of the
scaling functionG3(x). The asymptotic large-x behaviourG3(x) ≈ 33.6x5/3, shown as a
broken curve, is accurately obeyed for values of the scaling variable as small asx ≈ 0.5. The
full curve shows the one-parameter phenomenological fitG3(x) = (1− 0.56x+ 67.8x2)5/6,
with the fitted parameter being the amplitude of the middle term.

We end up with an investigation of the logarithmic behaviour (3.24) of the participation
numberS2(t), for generic values of the scaling variablex. To do so, for any fixed value of
the ratiox = t/ξ0, we have performed a least-square fit of all the available data fortS2(t)

against lnt , the slope and the intercept of those fits respectively yielding estimates forφ(x)

andχ(x). Figure 7 shows a log–log plot of the amplitudeφ(x) thus obtained, against the
scaling variablex. Broken curves show the value ofφ(0) given in equation (3.25), and
the asymptotic behaviourφ(x) ≈ 0.253x (see equation (3.26)). The full curve shows the
one-parameter phenomenological fitφ(x) = (0.002 57+0.002 82x+0.0639x2)1/2, with the
fitted parameter being again the amplitude of the middle term. Similar, albeit less accurate,
numerical results have been obtained for the functionχ(x).

4. Discussion

The most salient outcomes of this work are summarised in table 1. In the absence of
disorder, and for an initially localized wavepacket, the probability density of a tight-binding
particle exhibits anomalous scaling and bifractality. Indeed its moments of orderq, namely
the dynamical participation numbersSq(t), scale in time with a non-trivial exponentτ(q)
for q > 2.

To put it more boldly, a free quantum mechanical particle is bifractal. This striking
feature is entirely due to the presence of ballistic fronts. For the tight-binding model
considered in this paper, these fronts correspond to the transition region in the theory of
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Figure 7. Log–log plot of the amplitudeφ(x) of the participation numberS2(t), defined in
equation (3.24), against the scaling variablex = t/ξ0. Symbols: numerical data. Curves: as in
figure 2.

Bessel functions. Both the existence of ballistic fronts and their width scaling ast1/3 are
actually general characteristics of difference equations, with a bounded energy dispersion
curve. To the best of our knowledge, this bifractality phenomenon has been overlooked
so far. Plots similar to our figure 1, showing the squared Bessel function with its ballistic
fronts, have been displayed and described e.g. in [25], but without the authors noticing the
relevance of the fronts. The momentsMq(t) of the position of the particle are not affected
at all by the presence of ballistic fronts. [5] contains a rigorous and general discussion on
the spreading of a wavepacket.

For the Anderson model with a weak diagonal disorder, the bifractal phenomenon
persists throughout the different regimes of the localization phenomenon. Indeed anomalous
scaling of the participation numbers, with the same exponentτ(q), holds in the ballistic
regime (t � ξ0), in the localized regime(t � ξ0), and in the crossover between
them (t ∼ ξ0), where these quantities obey scaling laws involving the single variable
x = t/ξ0. These scaling predictions have been confirmed quantitatively by accurate
numerical simulations.

The bifractal exponentτ(q) characterizes both the time decay of participation numbers
in the ballistic case, and their dependence onξ0 in the localized regime. In the ballistic
regime(t � ξ0), this phenomenon is related to the existence of a finite upper band edge, and
to the uniform scaling of single eigenstates. This absence of multifractality is in turn related
to the direct crossover between a ballistic and a localized regime in the one-dimensional
geometry, without an intermediate diffusive phase. These features have been established by
means of a variety of analytical techniques [7, 8, 13–18]. In the localized regime(t � ξ0),
bifractality is intimately related to the Derrida–Gardner anomalous scaling of the localization
length and of the density of states near band edges.

Two very different physical mechanisms seem therefore to be responsible for the bifractal
behaviour observed in these two different regimes. Let us underline that both phenomena
have nevertheless one important characteristic in common. They take place near the band
edges of the energy spectrum (2.2) in the absence of disorder, where the two plane waves
exp(±inp) become identical. This degeneracy of the plane-wave basis explains, at least
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qualitatively, both the flatness of the dispersion curve around the upper band edge (hence
the existence of sharp ballistic fronts) and the high sensitivity of eigenstates to a perturbation
(hence the Derrida–Gardner anomalous scaling).

The usual participation numberS2(t) corresponds to the borderline case(q = 2) between
the normal and the anomalous regime. This quantity exhibits a logarithmic correction, either
in time (see equation (2.29)) or inξ0 (see equation (3.16)). A similar logarithmic behaviour
has been described [26] in the case of the mean return probability

C(t) = 1

t

∫ t

0
P0(u) du. (4.1)

In the absence of disorder, this quantity has a logarithmic correction to the naive scaling
C(0)(t) ∼ 1/t , which can be easily derived by the Mellin approach, yielding

C(0)(t) = 1

t

∫ t

0
(J0(2u))

2 du ≈ ln t + 4 ln 2+ γE
2πt

(4.2)

a result very similar to equation (2.29). This behaviour was shown in [26] to explain the
occurrence at several places in the literature of a fake non-trivial decay exponentδ ≈ 0.84
for the mean return probability, even in the absence of disorder, as well as a variety of
erroneous conclusions drawn from there.

Beyond the amusing phenomenon of bifractality demonstrated in the one-dimensional
Anderson model, the present work underlines that the moments of the position of a quantum
mechanical particle and the moments of the associated probability density (participation
numbers) can exhibit different scaling laws, with unrelated dynamical exponents. This
outcome corroborates the recent general discussion [5] on the complexity of the scaling
laws governing the dynamics of quantum systems.
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